Journal of Organometallic Chemistry, 87 (1975) 275-278 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

CHARGE LOCALIZATION IN THE MASS SPECTROMETRIC FRAGMENTA-TION OF SOME ORGANOCHLOROGERMANES

J. TAMÁS, K. UJSZÁSZY

Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest, 1088, Puskin u. 11-13 (Hungary)

A.K. MALTSEV and O.M. NEFEDOV

N.D. Zelinsky Institute of Organic Chemistry, Academy of Sciences of the U.S.S R., Moscow (U.S.S.R.)

(Received October 11th, 1974)

Summary

A large decrease of the relative abundances of germanium-containing ions has been observed in the electron-impact mass spectra when the H atoms of H_3CGeCl_3 and the $X=CH_3$ groups of $RGeX_3$ are replaced by Cl atoms. Consideration of the ionization potentials of the relevant radicals indicates that the charge localization effects can be explained in terms of Audier's rule.

Introduction

Previous studies [1, 2] of the mass spectra of alkyl-, aryl- and benzyl-substituted organogermanes have shown that almost all the ion current is carried by the metal-containing ions. This was true also for methyl- and aryl-chlorogermanes having one Ge—Cl bond [2], but for organochlorogermanes of general formula $(CH_{3-n}Cl_n)GeCl_3$ (n = 1, 2, 3) the fragmentation leads to abundant ions both with and without Ge [3], and the relative abundances of the former decrease as n increases (see Table 1).

TABLE 1

ABUNDANCE OF FRAGMENT IONS CONTAINING Ge FROM COMPOUNDS $(CH_{3-n}Cl_{n})$ GeCl₃

Data from ref. 3.

	Abundance
CICH2-GeCl3	83
Cl ₂ CH—GeCl ₃	46
Cl ₃ C-GeCl ₃	41

Discussion

It can be demonstrated that the effect of substituents on the charge localization outlined above is a consequence of the changes in the ionization potential (IP) values of the $\mathring{C}H_{3-n}Cl_n$ radicals with n. That is, the main primary fragmentation process for these compounds is the fission of the Ge—C bond, and $IP(CH_{3-n}Cl_n)$ decreases as n increases: for n=1 it is higher than $IP(GeCl_3)$, for n=2 the IP values are almost equal, and for n=3 $IP(CCl_3)$ is lower than $IP(GeCl_3)$ (see Table 2). The relative abundances of ions with and without Ge show a reverse order. Thus the effect mentioned above may be interpreted on the basis of Audier's rule [12], i.e. the positive charge remains on the fragment with the lower ionization potential $\stackrel{\triangleright}{}$. The same rule accounts for the surprisingly large effect on the localization of the positive charge, observed in the case of RGeX₃ type compounds when $X = CH_3$ is replaced by X = Cl (Table 3).

The main primary decomposition route of the molecular ions of these compounds is cleavage of the Ge-R bond. In this process for R-Ge(CH₃)₃ compounds the positive charge definitely remains on the Ge-containing fragment. In contrast, the scission of the R-GeCl₃ bond leads to the abundant ion R⁺. The reason for this large effect on the charge localization is obviously the difference in the ionization potential of GeCl₃* and Ge(CH₃)₃* radicals. Replacement of all the CH₃ groups of Ge(CH₃)₃* by Cl atoms increases the radical ionization potential of GeX₃* by 2.2 eV, and for the compounds examined: $IP(Ge(CH₃)₃) < IP(R^*) < IP(GeCl₃^*)$ (see Table 2); thus because of the chlorine substitution in the Ge-containing moiety, R becomes the fragment associated with the lower ionization potential and consequently the most abundant ion.

These results support the validity of Audier's rule for the primary fragmentation of these germanium-containing compounds.

TABLE 2 IONIZATION POTENTIALS OF SOME RADICALS

Radicals	IP (eV)	Ref.	
CH ₃	9.84 : 0 002	4	
CH2C1	9 70 : 0.09	5	
_	9.42	6	
CHCl2 *	954 : 01	5	
	9 02	6	
CC13	8 62	6	
	8.78 : 0.05	7	
p CH ₃ -C ₆ H ₄ -CH ₂	7.46 = 0.03	8	
P CI-C6H4-CH2	7.95 = 0.1	8	
CH2=CH-CH2	8 15 = 0.03	9	
cyclo CoH ₁₀ —CH ₃ *	7.56	10	
Ge(CH ₃) ₃ ·	7.11 : 0.18	11	
GeCl ₂ ·	9.34 = 0.2	3	

This rule is frequently wrongly described as Stevenson's rule.

^{**} For examples of applications and some apparent failures of the rule for organic compounds, see refs. 13-16.

TABLE 3

PARTIAL MASS SPECTRA OF COMPOUNDS RGeX3
70 eV. Abundance of ions is expressed in percentage of the total ion current

lons	$R = p \cdot Cl - C_0 H_4 CH_2$	6H4CH2	$R = p \cdot Br - C_6 H_4 C I I_2$	6H4CII2		Colli,CH2	$R = m \cdot CF_3$	-C ₆ 114CH2	$R=p\cdot CH_{3}+C_{6}H_{4}CH_{2} R=m\cdot CF_{3}+C_{6}H_{4}CH_{2} R=CH_{2}=CH+CH_{2}$	H-CII2	R = CH3—c	R = CH3-cyclo.Co H10
	X = CII, X = CI	X = Cl	$X = CII_3$ $X = CI$	X = C	X = C113	X B CI	X = CH1	N = CI	X = CH ₁ X = Cl	X = Cl		X = CH ₃ X = C)
N1 ⁺	7.2 9.8	9.6	7.6	12	9.6	8.0	2.3	7.7	0.5	5.6 3.4	3,4	0.1
(M —X)	7.2	0.2	6.0	0.1	7.5	0.1	10	0.5	7.4	1.9	7.7	0.3
GeX₁⁺	99	9.0	67	8.0	89	9.0	32	0.5	52	2.8	51	8.0
Ge-containing fragment ions 84	84	2.2	8.1	1.0	76	0.7	56	2.3	95	15	84	30
R ⁺	6,4	02	4.6	73	4.1	7.4	2.1	70	5.0	78	1 6	38

References

- 1 D.B. Chambers, F. Glockling, J.R.C. Light and M. Weston, Chem. Commun., (1966) 282.
- 2 F. Glockling and J.R.C. Light, J. Chem. Soc. A, (1968) 717.
- 3 J. Tamas, G. Czira, A K. Maltsev and O.M. Nefedov, J. Organometal. Chem., 40 (1972) 311.
- 4 G. Herzberg and J. Shoosmith, Can. J. Phys., 34 (1956) 523.
- 5 R.I. Reed and W. Snedden, Trans. Faraday Soc., 55 (1959) 876.
- 6 A. Streitwieser, Jr., J. Amer. Chem. Soc., 82 (1960) 4123.
- 7 J.B. Farmer, J.H.S. Henderson, F.P. Lossing and D.H.G. Marsden, J. Chem. Phys., 24 (1956) 348.
- 8 A.G. Harrison, P. Kebarle and F.P. Lossing, J. Amer. Chem. Soc., 83 (1961) 777.
- 9 F.H. Field and J.L. Franklin, Electron Impact Phenomena and the Properties of Gaseous Ions, Academic Press, New York, 1957.
- 10 J.L. Franklin, J.G. Dillard, H.M. Rosenstock, J.T. Herron, K. Draxl and F.H. Field, Ionization Potentials, Appearance Potentials and Heats of Formation of Gaseous Positive Ions, NSRDS-NBS26, 1969, p. 70.
- 11 M.F. Lappert, J. Simpson and T.R. Spalding, J. Organometal. Chem., 17 (1969) Pl.
- 12 H.E. Audier, Org Mass Spectrom., 2 (1969) 283.
- 13 A.G. Harrison, C.D. Finney and J.A. Sherk, Org. Mass Spectrom., 5 (1971) 1313.
- 14 M.A. Baldwin, A.M. Kirkien, A.G. Loudon and A. Maccoll, Org. Mass Spectrom., 4 (1970) 81.
- 15 R.G. Cooks and A.G. Varvoglis, Org. Mass Spectrom., 5 (1971) 687.
- 16 T.W. Bentley, R.A.W. Johnstone and F.A. Mellon, J. Chem. Soc. B, (1971) 1800.